Molecular dynamics simulation of the superionic conductor BaF2
نویسندگان
چکیده
منابع مشابه
Investigation of Melting by Molecular Dynamics Simulation
The melting of a 64 ion microcrystal of KCI was studied by means of a molecular dynamics computer simulation. We used a central pair interaction with an inverse power law repulsion. The thermodynamics, kinetic and structural properties such as melting temperature, latent heat, mean square displacement, diffusion constant, radial distribution function and bond angle distribution are calculated. ...
متن کاملMolecular Dynamics Simulation of the Melting Process in Au15Ag40 Nanoalloys
In this study the operations of melting of Au15Ag40 nanoalloy have been studied using the molecular dynamic simulations through the Gupta multiparticle potential and the nonergodicity of simulations is eliminated by the multiple histogram method. The melting characteristics are determined by the analysis of variations in the potential energy. The calculations indicate that the melting of Au15Ag...
متن کاملVacancy‐Contained Tetragonal Na3SbS4 Superionic Conductor
Tetragonal Na3SbS4 is synthesized as a new sodium superionic conductor. The discovery of Na vacancies experimentally verifies previous theoretical predictions. Na vacancies, distorted cubic sulphur sublattices and large Na atomic displacement parameters lead to the ionic conductivity as high as 3 mS cm-1, a value significantly higher than those of state-of-the-art sodium sulfide electrolytes.
متن کاملDesign and synthesis of the superionic conductor Na10SnP2S12.
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-sta...
متن کاملPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics A Solids and Surfaces
سال: 1992
ISSN: 0721-7250,1432-0630
DOI: 10.1007/bf00323845